

Parental Perceptions and Knowledge on Childhood Epilepsy in Ouarzazate: Cross-Sectional Survey from March to September 2024

Fahri J*, Atmsine T, Assem O, El Moussaoui S, Lahmini W and Bourouss M

Pediatric Emergency Department, CHU Med VI of Marrakech, Morocco

***Corresponding author:** Fahri J, Pediatric Emergency Department, CHU Med VI of Marrakech, Morocco; E-mail: drjihanefahri@gmail.com

Received: September 18, 2025; **Accepted:** December 15, 2025; **Published:** December 31, 2025

Abstract

Epilepsy is one of the most common neurological diseases in children, significantly impacting their lives and those of their families. In order to assess parents' perceptions and knowledge about childhood epilepsy, we conducted a cross-sectional, descriptive study. This survey was conducted among parents of children treated for epilepsy at the provincial hospital of Ouarzazate, Morocco, to assess their level of knowledge, perceptions and attitudes towards the disease. During the period from March 1 to September 1, 2024. The average age of the parents interviewed was 30.4 years with a clear female predominance (78%). Our survey included parents of varying intellectual levels, among whom 29.3% were illiterate. The study revealed several gaps in understanding of epilepsy. Nearly 72% of parents had no prior knowledge of the disease before their child was diagnosed, and 67% did not know the cause of epilepsy. In addition, misconceptions such as the perception of the disease as being caused by evil spirits, or as a mental illness, persist among a significant number of parents. Despite these shortcomings, the majority of parents (79.2%) were able to recognize the symptoms of an epileptic seizure, mainly in the form of convulsions. However, inappropriate practices during seizure management, such as inserting objects into the child's mouth, are still common. This survey also showed that epilepsy has a significant negative impact on the daily lives of families, both emotionally and socio-economically, with a high rate of discrimination against children with epilepsy. These results highlight the urgent need to improve awareness, education and psychological support for parents for better management of childhood epilepsy, particularly through culturally appropriate information campaigns and local social.

Keywords: *Epilepsy; Parents; Knowledge; Perceptions, Awareness and needs*

1. Introduction

Epilepsy is one of the most common pediatric neurological disorders, significantly affecting the lives of children and their families [1]. It affects 0.5% to 1% of children worldwide and remains the most common chronic neurological pathology in pediatrics. There has been a recent decline in its incidence in developed countries. However, low-income countries continue to suffer from it more and more [2].

According to the World Health Organization (WHO), epilepsy affects 50 million people worldwide. In addition, five million new cases of epilepsy are diagnosed each year, resulting in a disease burden that represents 0.5% of the global health crisis.

This complex brain condition is characterized by a tendency to cause recurrent, unprovoked seizures, leading to a cascade of neurobiological, cognitive, psychological and social consequences [3]. Most seizures are caused by somatic disorders of extracerebral origin, such as high fever, infection, head trauma, hypoxia, toxins [4]. Other causes include genetic syndromes and cerebrovascular diseases.

In the Moroccan context, where cultural beliefs and access to information may vary, it is crucial to assess parents' knowledge about this disease. A good understanding of epilepsy and its manifestations can not only improve the quality of life of affected children, but also reduce the stigma often associated with this pathology.

For this, a survey was conducted among parents of children followed for epilepsy in Morocco, in order to assess their level of knowledge about epilepsy. By identifying gaps and information needs, this study aims to provide recommendations to increase awareness and improve the care and quality of life of children followed for epilepsy in the Moroccan context.

2. Patients and Methods

This is a cross-sectional, descriptive and analytical survey aimed at assessing the parents' knowledge and perceptions of childhood epilepsy.

The survey includes parents of children followed for epilepsy who presented to the pediatric emergency room and pediatric and neurological consultation of the Sidi Hssain Benasser Provincial Hospital in Ouarzazate, during the period from March 1 to September 1, 2024. After explaining the objectives of the study to the parents, their participation was voluntary with respect for anonymity, they were interviewed face to face, in dialectal Arabic and Berber given the presence of Berber parents, by the same person and were subjected to a questionnaire that was adapted to the Moroccan sociocultural context and previously tested with parents before arriving at its final version. The questionnaire had a total of 32 questions. All questions were closed-ended with single choice. Only one question was open-ended.

The questionnaire consisted of four parts:

- A first part based on the study of the epidemiological and sociodemographic profile of the parents.
- A second part assessing parents' general knowledge about childhood epilepsy.
- A third part aimed at determining their perceptions and attitudes.

- A fourth part devoted to discussing their needs and recommendations for improving the management of childhood epilepsy.

Data collection was carried out using a previously computerized questionnaire. After collecting all the responses, the questionnaire was followed by a discussion with the parents in order to raise their awareness and correct bad practices relating to the management of epilepsy in children.

The tools used to carry out this study were:

- ✓ “Microsoft office Excel” which was used for the analytical study of the results.
- ✓ “Google Forms” which was used for data entry and statistical analysis.

The statistical analysis was of the simple univariate type.

3. Results

All parents invited to participate in the survey agreed to answer the questionnaire without hesitation. Out of 87 questionnaires completed, we discarded 5 whose data were incomplete. This gives a response rate of 94%.

3.1 Sociodemographic and epidemiological data

The average age was 30.4 years with extremes ranging from 22 to 56 years.

Females represent 78% of the interviewees. Among the parents, 59% are of rural origin and 41% live in urban areas. The level of education was variable with a clear predominance of parents who had benefited from primary schooling at 40.2%, only 11% of parents had pursued higher education. The majority of mothers were housewives (79.2%). The majority of families had an income below the minimum wage (46.3%) and only 13.4% had an income above 6,000 DH. 59.7% are of low socioeconomic level.

3.2 Data on parents' general knowledge about childhood epilepsy

72% had no information about epilepsy before their child was diagnosed. Only 28% of parents had an idea about the pathology, the main source of which was the media (34.8%).

Nearly a third, or 30.5%, were diagnosed more than 2 years ago. Most of the parents interviewed (n=61) had information after the diagnosis of epilepsy. After the diagnosis of epilepsy, the responses changed as the main source became health personnel, with a percentage of 50.8%.

More than a third (n=28) of the parents surveyed responded that epilepsy is a mental illness. The majority, 84.1%, stated that epilepsy is a non-contagious disease and 61% believed that epilepsy was a hereditary disease.

More than a third (35.77%) were convinced that evil spirits are among the causes of epilepsy and 71% said that epilepsy was an incurable disease.

In our study, the majority of parents (n=65) highlighted that they knew the symptoms of an epileptic seizure, with a percentage of 79.2% of whom 50.7% thought that convulsion was the main symptom of an epileptic seizure.

Two-thirds (67%) of our sample did not know the cause of their children's epilepsy.

3.3 Data on perceptions and attitudes

In our series, 67 of the parents, or 81.7%, had witnessed an epileptic seizure.

The majority of parents (73.1%) said they knew the emergency measures in case of an epileptic seizure. Parents chose very different proposals.

Their proposals are shown in the table below.

<u>Initial procedures</u>	Yes	No
Stick out your tongue	59	23
Remove nearby objects	77	5
Protect the head	79	3
Wait for the end of the crisis	45	37
Put an object between the teeth	7	75
Offer prayers	31	51
Removing objects from the mouth	54	28
Ensure prolonged sleep for the child	42	40
Clean the mouth by allowing saliva to flow	33	49
Consult an herbalist urgently	29	52
Transport the child to the hospital urgently	51	31

The association between loss of consciousness and epileptic seizure was reported by 81.7% of parents, 92.6% of parents reported that they were afraid when their children had a seizure.

The majority of parents (n=73), or 92.6%, said that their children were indeed discriminated against and more than two thirds of parents, or 69.5%, responded that their child could not have the same level of intelligence.

On a personal level, more than half (56%) of parents reported a negative impact on their daily lives.

3.4 Data on needs and recommendations for improving the management of childhood epilepsy

In our series, family was the main source of support for about half of the parents (47.5%). More than half (56.1%) of the parents reported their need for psychological support. 45.1% of the parents were dissatisfied with the medical and psychological support in the management of epilepsy in their child.

The most reported suggestions by parents for improving the care and support of children with epilepsy and their families in Ouarzazate were: Strengthening care structures with the creation of specialized epileptology units in hospitals and the creation of local associations or support groups.

4. Discussions

4.1 Historical

Epilepsy is one of the rare nosological entities that has survived for millennia. This is due both to its particular symptomatological expression and to the difficulties in understanding its origin and treating it. Epilepsy has always been a source of confusion between magical and scientific conceptions, between superstitious beliefs and rational explanations. Despite the genius of eminent historical scientists such as Hippocrates, discussions about the origin of the disease will be numerous during the different periods of history and the idea recognizing epilepsy as a brain disorder will take more than 2000 years to be accepted. It was only in the second half of the 19th century, under the impetus of the work of John Hughlings Jackson, that epilepsy will definitively pass, at the scientific level, from the field of psychiatry to that of neurology.

4.2 Definition

Epilepsy has been conceptually defined by the International League Against Epilepsy as a brain pathology characterized by a lasting predisposition to generate seizures and by the cognitive, behavioral, psychological and social consequences of this condition. This chronic disease is therefore not limited to the occurrence of seizures, and it can impact on the quality of life of PAEs through its consequences on their usual functioning.

Epileptic seizures are common in children, in most cases it will be a single episode, most often related to fever. We then speak of occasional epileptic seizure and not epilepsy.

Epilepsy is characterized by the recurrent and spontaneous occurrence of epileptic seizures. The incidence of epilepsy is much higher in pediatric age than in adults. They constitute a group of diseases that are heterogeneous in their etiologies and their repercussions, especially when they begin in a developing brain. Epilepsy is also a particularly anxiety-provoking disease and its impact within the family and on learning, schooling, and extracurricular activities must be assessed and controlled as much as possible. Like any chronic disease, the child's personal involvement must be sought from a very young age, according to their abilities, through direct explanations to the child and through empowerment in taking treatment and in the daily management of their disease. The diagnostic approach is identical in adulthood but the number of diagnostic possibilities is wider. In addition, a child can progress from one epileptic syndrome to another over time.

Operationally, the diagnosis of epilepsy is made in three situations:

- 1) Occurrence of two epileptic seizures without triggering factor, separated by at least 24 hours;
- 2) Occurrence of an epileptic seizure, the assessment of which allows a diagnosis of epileptic syndrome to be made (for example, epilepsy with centrot temporal spikes, or idiopathic generalized epilepsy);
- 3) Occurrence of an epileptic seizure for which the assessment finds a cause of epilepsy (for example, diagnosis of epileptogenic malformation of the cortex).

4.3 Pathophysiology

The pathophysiology of epilepsy is complex and composed of several intracerebral processes. It is simplified into three stages.

4.3.1 Initiation of epileptic discharge

Epileptic activity is characterized by a massive paroxysmal depolarization (Paroxysmal depolarization shift=PDS), which generates bursts of action potentials (burst) within a population of neurons. These PDS are expressed to the clinician in the form of "spikes" on the electroencephalogram of an epileptic patient.

4.3.2 Propagation of epileptic discharge

During sufficient activation, there is a recruitment of surrounding neurons. The symptoms depend on the cortical area affected by the epileptic discharge. For example, if the discharge propagates through the sensory cortex, the affected subject will perceive paresthesias (tingling, pins and needles, etc.) [8].

4.3.3 End of epileptic discharge

There are several mechanisms that can stop the discharge. In these mechanisms, there is the accumulation of cellular waste secondary to the crisis [8].

4.4 Classification

1/Type of crisis [9]: The starting point for the classification of Epilepsy is the determination of the type of seizure. Seizures are classified into focal seizure, generalized seizure and seizure of unknown onset.

2/Type of epilepsy [10]: It assumes that the patient has a diagnosis of epilepsy based on the proposed definition. The type of epilepsy includes a new category: "Combined Generalized and Focal Epilepsy" in addition to the known types (focal and generalized epilepsies). People with generalized epilepsies may have several types of seizures: absence, myoclonic, atonic, tonic, and tonic-clonic seizures. The diagnosis of generalized epilepsy is based on the clinical description, supported by the presence of typical interictal epileptiform discharges on the EEG.

Focal seizures can be of several types: focal seizures with preserved awareness, focal seizures with altered awareness, focal motor or non-motor seizures, and focal seizures evolving into bilateral tonic-clonic seizures.

3/Epileptic syndromes: The third level of classification is the diagnosis of epileptic syndrome.

An epileptic syndrome is defined by the consistent and non-coincidental association of clinical and paraclinical features such as seizure type, EEG and imaging. It often includes age-dependent features such as age of onset and remission (if any), seizure-promoting factors, their variable occurrence depending on the sleep-wake cycle and sometimes the prognosis [11,12].

4.5 Epidemiology

Three indicators are used in descriptive epidemiology to assess disease frequency: incidence, prevalence and mortality [13].

Frequency, incidence and prevalence: According to a recent publication by the American Epilepsy Society, epilepsy is the most common chronic childhood condition. Epilepsy affects between 0.5% - 1% of children worldwide. One in 150 children suffers from epilepsy during the first 10 years of life [14]. About 10% of all epilepsies occur during the first three years of life.

For Morocco, there is little information on this subject because very few studies have been published in this direction, a study carried out in Marrakech, estimated that cases of childhood epilepsy represented 8.5% of the consultants of the pediatric service [18].

4.6 Epidemiological

4.6.1 Age of parents

Several studies have been conducted whose results match those of our study, namely the study published in 2019 in India, which showed that the majority of parents were aged 25 to 35, with an average age of 37.2 years [22]. SoIn Nigeria, where the average age of parents was 31[20], HoweverIn Serbia, in the Gazibara survey, the average age of parents was 43 years [21].

4.6.2 Parents' gender

From the results of our survey, we can see that in the majority of cases (78%), it was the mother who answered the questionnaire. This is consistent with the data from the study by Alharthi et al. [19] and Frank-Briggs [20] As for the study of Mu et al [24], it was intended exclusively for mothers.

4.6.3 Parents' education level

Our survey included parents of different intellectual levels. This is of capital interest in allowing us to study the influence of this factor on the parents' perception and knowledge of the child's epilepsy.

Furthermore, more than a third of the interviewees had benefited from primary schooling (40.2%). These results do not match those of the Frank-Briggs and Gazibara studies, in which 47.5% and 57.3% had benefited from secondary schooling [20,21]. On the other hand, in the survey conducted by Ayidh S et al, the group of parents with a university level represented the majority, i.e. 85.7% of the respondents [19].

4.6.4 Place of residence

In our study, we found that 58.5% of participants resided in urban areas. These results were consistent with those of Alharthi's studies, respectively [19] and Rani [22] in which 77.6% and 65% were urban residents.

Place of residence plays an important role in the management of childhood epilepsy. Families living in urban areas generally have better access to care, education, and social support, which can improve the quality of life of children with epilepsy.

4.6.5 Mother's occupation

The occupation of mothers in the context of epilepsy in their children is an important aspect to consider, as it can influence not only family dynamics but also the management of the disease. In our study, it was observed that the majority of mothers (79.2%) were housewives. The fact that the majority of mothers in our series were housewives may have significant implications for the management of children with epilepsy.

4.6.6 Household income and socioeconomic level

The socioeconomic level of families with children with epilepsy is a determining factor that influences not only access to medical care, but also the overall quality of life of children and their families. In our study, it was observed that the majority of parents surveyed had a disadvantaged socioeconomic level (59.7%), with 46.3% of families having an income below the minimum wage.

4.7 Assessment of parents' general knowledge

4.7.1 Prior knowledge about epilepsy before diagnosis

In our study, 72% of parents had no prior knowledge about epilepsy before their child was diagnosed. This data is comparable to several studies conducted in developing countries, where general knowledge about epilepsy is low. For example, a study conducted by Frank-Briggs et al in Nigeria [20] as well as a study carried out in Saudi Arabia by Alharthi. This is often due to a lack of access to information campaigns and systematic awareness raising in low-income countries.

In developed countries, the trend is the opposite. A study conducted in Canada by Ryan et al showed that 87% of parents had already heard of epilepsy before diagnosis [23].

4.7.2 Sources of information before diagnosis

In our study, the media were the primary source of information about epilepsy before diagnosis, cited by 34.8% parents, followed by Internet has 26.1%. This result is similar to that of the study of Rani in India, or 40% of parents cited the media as their main source of information. This phenomenon can be explained by the ease of access to the media [22]. Conversely, in studies carried out in developed countries such as Canada, THE health professional sare often cited as the first source of information. Knowledge and source of information after diagnosis:

The results of our study showed that 76% of parents received information about epilepsy after their child was diagnosed. Our results showed a notable change after diagnosis, with the primary source of information being healthcare professionals at 50.8%. This pattern is common in many studies.

For example, in Alharthi's study in Saudi Arabia, 55% of parents also turned to healthcare professionals after diagnosis. In Serbia, a study by Gazibara et al showed that 45% of parents considered healthcare professionals as the primary source of information after diagnosis [27].

4.7.3 Epilepsy and mental illness

The question of whether epilepsy is considered a mental illness is complex and often surrounded by stereotypes. In our survey, 34.2% of parents answered “yes” to the question. This is consistent with the study by Ayidh et al which showed that 24.5% of parents considered epilepsy to be a mental illness.

Perceiving epilepsy as a mental illness has serious consequences for the medical management of patients. It can delay access to appropriate neurological care and lead families to seek alternative or traditional treatments that are not always appropriate [31].

4.7.4 Epilepsy and heredity

In our study, it is mentioned that 61% of parents believe that epilepsy is a hereditary disease. This indicates a strong belief among parents regarding the potential genetic link of the disease.

In Saudi Arabia the study by Ayidh S et al showed that 55% of parents consider epilepsy to be a hereditary disease [19]. In Serbia Tatjana a et al study stated that (31.9%) of parents believed that epilepsy is not hereditary [21].

This highlights the importance of comprehensive education that addresses not only symptoms but also causes, including genetic and environmental factors, while taking into account cultural beliefs that may influence perceptions of epilepsy [32].

4.7.5 Epilepsy and contagiousness

Epilepsy is not contagious. Although many underlying pathological mechanisms can cause epilepsy, the cause of the disease is still unknown in approximately 50% of cases worldwide. The causes of epilepsy are classified into the following categories: structural, genetic, infectious, metabolic, immune, and unknown [33].

In our study, it was noted that 84.1% of the parents surveyed believed that epilepsy was not contagious. This indicates a relatively good understanding of the disease among our population, but there is still a percentage who may have doubts or misconceptions. This is consistent with the study by Ayidh S. et al which showed that all parents reported that epilepsy is a non-contagious disease [19]. On the other hand, a study was done in Nigeria, it showed that the majority (63.5%) of parents reported that epilepsy is a contagious disease [20].

4.7.6 Epilepsy and evil thoughts

Epilepsy, as a neurological disorder, has often been surrounded by cultural beliefs and superstitions, including the idea that it may be caused by evil forces or spirits. Indeed, despite medical advances, some people continue to believe that epilepsy is caused by evil spirits. In our study, 35.3% of parents surveyed expressed the belief that evil spirits could be the cause of their child's epilepsy. This is consistent with a study conducted in South Africa by Kaddumukasa et al which found that 45% of families considered epilepsy to be linked to supernatural forces or malevolent spirits.[34].

The belief that epilepsy is caused by evil forces can lead to stigmatization of those affected. This can isolate them socially and prevent them from receiving appropriate medical treatment. Some families may choose to use traditional or spiritual practices instead of medical care, which can worsen the individual's condition and increase the risk of uncontrolled seizures.

4.7.7 Epilepsy and healing

Epilepsy is a chronic neurological disorder characterized by recurrent seizures due to abnormal electrical activity in the brain. The question of curing epilepsy is complex and depends on several factors, including the type of epilepsy, response to treatment, and underlying causes.

In our study, 71% of parents surveyed responded that epilepsy is not a curable disease. This is consistent with the Frank-Briggs study in Nigeria which showed that 55% of parents knew that epilepsy is an incurable disease [20]. Contrary to the study done by Alharthi in Saudi Arabia which mentions that 81.6% of parents knew that epilepsy is a curable disease [19].

4.7.8 Knowledge about the symptoms of an epileptic seizure

In our study, a significant proportion of parents (79.2%) reported being aware of the symptoms of an epileptic seizure in their child. Of these parents, approximately half (50.7%) considered seizures to be the main symptom of an epileptic seizure. In a study conducted in Saudi Arabia among parents of children with epilepsy, 65% of parents could recognize the symptoms of an epileptic seizure. Of these, 58% identified seizures as the main symptom. These figures are comparable to those in our study, suggesting that seizures are widely perceived as the most characteristic sign of epilepsy [19].

4.7.9 Cause of epilepsy

In our study, a significant majority of parents (67.1%) did not know the cause of their child's epilepsy. This figure indicates a major gap in understanding the factors underlying this disease. Which is strictly consistent with the Frank-Briggs study [20] which reported that 93.9% of parents did not know the cause of epilepsy. Lack of knowledge about the causes of epilepsy can have significant consequences for the management of the condition. Parents who do not understand the origins of epilepsy may experience feelings of guilt, which can affect their ability to support their child. Previous studies have shown that understanding the causes of the condition is linked to better seizure management and reduced parental anxiety [40].

In France, the High Authority for Health (HAS) emphasizes that parents may have difficulty understanding the precise causes of epilepsy, especially when complex genetic or environmental factors are involved. However, seizures linked to infections, birth trauma or congenital anomalies are well known, although some forms of epilepsy remain unexplained or poorly understood by families [41].

4.8 Parents' perceptions and attitudes

4.8.1 Knowledge of initial procedures during an epileptic seizure

Recognition of initial procedures by parents or caregivers when a child has a seizure is essential for the child's safety and to limit complications.

In our study, it was observed that the majority of parents (73.1%) claimed to be aware of the initial procedures to follow during an epileptic seizure. This indicates a relatively high level of awareness among parents, which is essential to ensure the safety of the child during a seizure.

In Nigeria, Frank-Briggs et al found that 60% of parents were aware of some initial procedures for managing an epileptic seizure. However, many parents still had misconceptions, such as the need to put an object in the child's mouth to prevent tongue biting. This misconception can have serious consequences, such as mouth injuries or choking [20].

Studies show that training parents on what to do in a crisis significantly improves recognition of appropriate procedures [43]. A Canadian study by Austin et al found that 90% of parents who received specific training in seizure first aid were able to recognize and apply the correct procedures during a seizure. In contrast, those who had not been trained tended to react inappropriately, such as trying to wake the child or hold him down [44].

4.8.2 Association of loss of consciousness and epileptic seizure

Epileptic seizures can present in a variety of forms, some of which are associated with loss of consciousness. Understanding this association is crucial for parents, caregivers, and healthcare professionals.

In our study, 81.7% of parents believed that all seizures were accompanied by jerky movements and loss of consciousness. In contrast, the Frank-Briggs study showed that 21% of parents said that all seizures are associated with loss of consciousness but 67.1% did not know [20]. This perception may be influenced by the media portrayal of epileptic seizures, which tends to focus on generalized seizures. It may also reflect a lack of understanding of the different types of seizures and their manifestations.

The association between epileptic seizures and loss of consciousness is a fundamental aspect of understanding this condition. Although many parents are aware of this association, there are still gaps in knowledge about the different types of seizures [45].

4.8.3 Epilepsy and fear

Epilepsy is a chronic neurological condition that affects not only the individuals who suffer from it, but also their families and loved ones. One of the most striking aspects of this disease is the fear that accompanies it, both in patients and parents. This fear can be linked to several factors, including the uncertainty of seizures, social stigma, and concerns about safety [47].

Research shows that parent education and building support networks are the most effective ways to reduce fear. Austin et al showed that training programs, particularly those focused on what to do during seizures, significantly reduced parental fear and anxiety.

4.8.4 Discrimination and epilepsy

In our study, it was observed that the majority of parents (92.6%) believed that their children were being discriminated against. Discrimination against people with epilepsy is a well-documented phenomenon in the literature. Several studies have highlighted that people treated for epilepsy are often perceived negatively, which can lead to significant social and psychological consequences. Perceptions of discrimination by parents may also contribute to anxiety and depression in children with epilepsy, as indicated by the work of Lindsay et al.

In light of these findings and the existing literature, it is clear that concerted efforts are needed to raise awareness, educate the public, and provide adequate support to parents and children affected by epilepsy.

4.8.5 Epilepsy and intelligence

In our study, more than 69.5% of parents believe that children treated for epilepsy do not have the same level of intelligence as other children. This perception reflects preconceived ideas, sometimes widespread, and highlights a lack of information on the real impact of epilepsy on children's cognitive abilities. This belief is also influenced by cultural and social factors, which can further stigmatize children treated for epilepsy.

Our study is consistent with the results of other research conducted in similar contexts. For example, the study conducted in Saudi Arabia [19], in Nigeria the study conducted by Frank-Briggs [20]. In contrast, in high-income countries like Canada, studies show a more nuanced perception [23].

The question of whether epilepsy affects intelligence is complex. Epilepsy, in itself, does not necessarily impair cognitive abilities in general, but several factors can influence intellectual development in affected children, including seizure frequency, severity of the disease, drug treatment, and possible underlying neurological factors.

4.8.6 Impact of epilepsy on parents' daily lives

In our study, over 56% of parents surveyed said their child's epilepsy had a negative impact on their daily lives. These findings show how epilepsy can disrupt not only the child's life, but also that of the parents and the family as a whole.

The literature consistently demonstrates that epilepsy, due to the unpredictability of seizures and the care it requires, profoundly affects the daily lives of parents and children.

In addition to the disruption to daily routine, epilepsy can have a significant psychological impact on parents.

Epilepsy can also have a significant financial cost. Medical expenses, medications, frequent appointments with specialists, as well as the possible need to reduce or give up work to care for the child, can affect the family budget.

5. Conclusion

Epilepsy is a complex condition that primarily affects children, but also affects the lives of their families, particularly parents, whose understanding of the condition plays a crucial role in the management and well-being of affected children.

Through our study, it was clearly demonstrated that parents' knowledge about epilepsy varies considerably depending on cultural context, level of education, and access to medical information. However, some universal trends emerge. Our study revealed the importance of parent education and support to improve treatment adherence and clinical outcomes of children with epilepsy. Appropriate information and psychological support play a central role in helping parents understand the disease, cope with social stigma, and effectively manage their child's seizures. Awareness campaigns, as well as targeted educational programs, are needed to address gaps in parents' knowledge, particularly in contexts where stigma and harmful beliefs persist.

REFERENCES

1. Jan MMS. Perception of pediatric neurology among non-neurologists. *J Child Neurol*. 2004;19(1):1-5.
2. Aaberg KM, Gunnes N, Bakken IJ, et al. Incidence and Prevalence of Childhood Epilepsy: A Nationwide Cohort Study. *Pediatrics* 2017;139(5):e20163908.
3. Beghi E. The Epidemiology of Epilepsy. *Neuroepidemiology*. 2020;54(2):185-91.
4. Osuntokun BO, Adeuja AO, Nottidge VA, et al. Prevalence of the epilepsies in Nigerian Africans: a community-based study. *Epilepsia*. 1987;28(3):272-9.
5. 04_r_epilepsie.pdf [Internet]. [cité 2024 oct 3]; Available from: http://www.medecine.unige.ch/enseignement/apprentissage/module4/immersion/archives/2003_2004/travaux/04_r_epilepsie.pdf
6. Isabelle LP. Parcours de santé de l'enfant avec épilepsie. 2023.
7. Ville D. L'épilepsie de l'enfant. *Contraste*. 2013;38:37-57.
8. Bromfield EB, Cavazos JE, Sirven JI. Basic Mechanisms Underlying Seizures and Epilepsy [Internet]. In: An Introduction to Epilepsy [Internet]. American Epilepsy Society; 2006 [cité 2024 oct 4]. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK2510/>
9. Fisher RS, Cross JH, French JA, et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. *Epilepsia*. 2017;58(4):522-30.
10. Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE official report: a practical clinical definition of epilepsy. *Epilepsia*. 2014;55(4):475-82.
11. Proposal for classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. *Epilepsia* 1985;26(3):268-78.
12. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. *Epilepsia*. 1989;30(4):389-99.
13. Thiam L, Seck N, Diouf FN, et al. Clinical and paramedical features of epilepsy in children at the Ziguinchor Peace Hospital: a documentation review. *Pan Afr Med J*. 2020;37:387.
14. Aaberg KM, Gunnes N, Bakken IJ, et al. Incidence and Prevalence of Childhood Epilepsy: A Nationwide Cohort Study. *Pediatrics*. 2017;139(5):e20163908.
15. Bouis C, Cavézian C, Chokron S. Les troubles neurovisuels dans l'épilepsie de l'enfant : un état des lieux. *Rev Neuropsychol*. 2011;3(3):155-60.
16. Belfkih R, Souirti Z, Belahsen F, et al. L'épilepsie dans la région de Fès-Boulmane, Suivi prospectif d'une cohorte de 60 patients. *Afr Middle East Epilepsy J*. 2012;1(4):19-22.

17. Kissani N, Belaïdi H, Othmani M, et al. Comparaison du profil des patients épileptiques au Maroc à plusieurs années d'intervalle [Internet]. 2001 [cité 2024 oct 4]. Available from: <https://www.semanticscholar.org/paper/Comparaison-du-profil-des-patients-%C3%A9pileptiques-au-Kissani-Belaïdi/6f31f2315b617a354a076ad7417a860458689a90>.
18. Masson E. Caractéristiques des enfants ayant une épilepsie suivis au CHU de Marrakech [Internet]. EM-Consulte [cité 2024 oct 4]; Available from: <https://www.em-consulte.com/article/270718/caracteristiques-des-enfants-ayant-une-epilepsie-s>.
19. Alharthi AS, Alzahrani SA, Alharbi AA, et al. Parents' Knowledge, Awareness, and Attitude Toward Children with Epilepsy in the Al Baha Region, Saudi Arabia: A Cross-Sectional Study. Cureus. 2023;15(10):e48057.
20. Frank-Briggs AI, Alikor EA. Knowledge and attitudes of parents toward children with epilepsy. Ann Afr Med. 2011;10(3):238-42.
21. Gazibara T, Nikolovski J, Lakic A, et al. Parental knowledge, attitudes, and behaviors towards children with epilepsy in Belgrade (Serbia). Epilepsy Behav. 2014;41:210-6.
22. Rani A, Thomas PT. Parental Knowledge, Attitude, and Perception about Epilepsy and Sociocultural Barriers to Treatment. J Epilepsy Res. 2019;9(1):65-75.
23. Ryan BL, Speechley KN, Levin SD, et al. Parents' and physicians' perceptions of childhood epilepsy. Seizure. 2003;12(6):359-68.
24. Mu PF, Wong TT, Chang KP, et al. Predictors of maternal depression for families having a child with epilepsy. J Nurs Res. 2001;9(4):116-26.
25. Manford M. Recent advances in epilepsy. J Neurol. 2017;264(8):1811-24.
26. Jensen FE. Pediatric epilepsy models. Epilepsy Res. 2006;68(1):28-31.
27. Phelan SM, Salinas M, Pankey T, et al. Patient and Health Care Professional Perspectives on Stigma in Integrated Behavioral Health: Barriers and Recommendations. Ann Fam Med. 2023;21(Suppl 2):S56-60.
28. Epilepsies I of M (US) C on the PHD of the, England MJ, Liverman CT, et al. Health Professional Education [Internet]. In: Epilepsy Across the Spectrum: Promoting Health and Understanding. National Academies Press (US); 2012.
29. Shaw EJ, Stokes T, Camosso-Stefinovic J, et al. Self-management education for adults with epilepsy. Cochrane Database Syst Rev. 2007;18(2):CD004723.
30. Epilepsies I of M (US) C on the PHD of the, England MJ, Liverman CT, et al. Public Education and Awareness [Internet]. In: Epilepsy Across the Spectrum: Promoting Health and Understanding. National Academies Press (US); 2012.
31. Choi-Kwon S, Kim EK, Youn SM, et al. Common Misconceptions in People with Epilepsy. J Clin Neurol. 2006;2(3):186-93.
32. Epilepsy [Internet]. [cité 2024 oct 1]; Available from: <https://www.who.int/news-room/fact-sheets/detail/epilepsy>.
33. Principaux repères sur l'épilepsie. 2024 oct 1]; Available from: <https://www.who.int/fr/news-room/fact-sheets/detail/epilepsy>.
34. Kaddumukasa M, Kaddumukasa MN, Buwembo W, et al. Epilepsy misconceptions and stigma reduction interventions in sub-Saharan Africa, a systematic review. Epilepsy Behav. 2018;85:21-7.
35. Nubukpo P. Approche épidémiologique des représentations socio-culturelles et des conséquences psychosociales des épilepsies au Togo et au Bénin (Afrique) et en Limousin (France) [Internet]. 2002 [cité 2024 oct 20]; Available from: <https://theses.fr/2002LIMO103C>.

36. Manford M. Psychosocial care needs of children with new-onset seizures. 2. *J Neurosci Nurs.* 1998;30(3):161-5.
37. Shore CP, Buelow JM, Austin JK, et al. Continuing Psychosocial Care Needs in Children with New-Onset Epilepsy and Their Parents. *J Neurosci Nurs.* 2009;41(5):244-50.
38. Harden J, Black R, Chin RFM. Families' experiences of living with pediatric epilepsy: A qualitative systematic review. *Epilepsy Behav.* 2016;60:225-37.
39. Choi S, Bang KS. Health-related quality of life in children with epilepsy: a concept analysis. *Child Health Nurs Res.* 2023;29(1):84-95.
40. Baker GA, Brooks J, Buck D, et al. The stigma of epilepsy: a European perspective. *Epilepsia.* 2000;41(1):98-104.
41. Thomas SV, Nair A. Confronting the stigma of epilepsy. *Ann Indian Acad Neurol.* 2011;14(3):158-63.
42. MacLeod JS, Austin JK. Stigma in the lives of adolescents with epilepsy: a review of the literature. *Epilepsy Behav.* 2003;4(2):112-7.
43. Subki AH, Mukhtar AM, Al-Harbi RS, et al. The Impact of Pediatric Epilepsy on Children and Families: A Multicenter Cross-Sectional Study. *Clin Pract Epidemiol Ment Health.* 2018;14:323-333.
44. Rathouz PJ, Zhao Q, Jones JE, et al. Cognitive development in children with new onset epilepsy. *Dev Med Child Neurol.* 2014;56(7):635-41.
45. Kinkar A, Alqarni D, Alghamdi A, et al. Parental Knowledge, Attitudes, and Behaviors Toward Their Epileptic Children at King Abdulaziz University Hospital: Cross-Sectional Study. *Interact J Med Res.* 2020;9(1):e12697.
46. McNelis A, Musick B, Austin J, et al. Psychosocial care needs of children with new-onset seizures. 2. *J Neurosci Nurs.* 1998;30(3):161-5.
47. Subki AH, Mukhtar AM, Al-Harbi RS, et al. The Impact of Pediatric Epilepsy on Children and Families: A Multicenter Cross-Sectional Study. *Clin Pract Epidemiol Mental Health.* 2018;14:323-33.