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1. Introduction 

A continuous random variable X is said to have Exponential distribution, if its probability density function is given by, 

 

f(x, θ) = {
e

−
x
θ

θ
, if x > 0, θ > 0                          

0, Otherwise.                                     
     (1.1) 

 

This distribution is one of the most important distributions having it application specially in life testing. In this case, 

 

E(X) = θ     (1.2) 

 

For specified mission time′ t′, the reliability of the distribution, denoted by R(t, θ), is given by 
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R(t, θ) = P(X ≥ t) = e−
t

θ        (1.3) 

 

The failure rate for this distribution, denoted by  

h(t) =
f(t,θ)

R(t,θ)
=

1

θ
, a constant. 

 

Due to constant failure rate this distribution is most suitable for items which are free from the effect of so called ‘Ageing’, 

specially electrical and electronic items. 

 

2. Basic Concepts  

Rukhin [1] proposed a loss function which is given by 

 

L(θ, δ, γ) = w(θ, δ)γ− 
1

2 + γ
1

2          (2.1) 

 

Where γ is an estimator of the loss function w(θ, δ) which is non-negative. 

∂L(θ,δ,γ)

∂γ
= 0 gives  γ = w(θ, δ) 

 

Since 
∂2L(θ,δ,γ)

∂γ2 > 0 at γ = w(θ, δ) .So L(θ, δ, γ) is minimum in γ when γ = w(θ, δ). 

 

Let  X = (X1, X2, … Xn) be a random sample of size n, then the Bayes risk is 

E{ L(θ, δ, γ)/X} = E{w(θ, δ)/X}γ− 
1
2 + γ

1
2 

∂E{L(θ,δ,γ)/X}

∂γ
= 0 gives γ = E{w(θ, δ)/X}.  

 

So, if δB(X) is the Bayes estimator of θ or a function of θ under the loss function w(θ, δ)  γB(X)  be the Bayes estimator of θ 

corresponding to  L(θ, δ, γ).Thus, 

 

γB(X) = E{w(θ, δB)/X}     (2.2) 

 

A generalized form denoted by L(ϕ(θ), δ, γ) for estimating a function ϕ(θ),is given by, 

 

L(ϕ(θ), δ, γ) =  w(ϕ(θ), δ)γ− 
1

2 + γ
1

2   (2.3) 

 

Where, γ is an estimator of the loss function w(ϕ(θ), δ). 

 

The Bayes estimator of ϕ(θ) corresponding to  L(ϕ(θ), δ, γ),denoted by γϕB(X) ,is given by, 
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γϕB(X) = E{w(ϕ(θ), ϕB)/X}     (2.4) 

 

Where, ϕB(X) is the Bayes estimator of ϕ(θ) under the loss function w(ϕ(θ), δ) 

 

Let X1 ,  X2 ,  X3 ,…  Xn  be a random sample of size n  and X(1) <  X(2) <  X(3) < …< X(n−1) < X(n)  be the order statistic 

corresponding to this random sample. In case of type- II censoring, n items are placed on test and the test is terminated after 

first ‘r’ (r pre-specified) failures. Thus, only r ordered observed values of X(1) <  X(2) <  X(3) < … < X(r−1) < X(r)  are 

recorded. For observed values x(1) <  x(2) <  x(3) <…< x(r−1) < x(r),the likelihood function, denoted by L(θ) ,is given by, 

 

L(θ) = kθ−re−
tr
θ                 (2.5) 

 

Where, k is function of n, r and x(i) i=1,2…r and does not contain θ. 

 

tr = ∑ x(i)
r
i=1 + (n − r)x(r)    (2.6) 

 

tr is an observed value of the statistic Tr given by, 

 

Tr = ∑ X(i)
r
i=1 + (n − r)X(r)    (2.7) 

 

Epstein and Sobel [2] have proved that 
Tr

r
 is M.L. E as well as UMVUE for θ.This estimator also attains the Cramér-Rao Lower 

bound. Bhattacharya [3] derived the estimate of θ and R(t, θ) in Bayesian framework under the assumption of Squared Error 

Loss Function (SELF) and three different prior distributions for θ. Guobing Fan [4] has derived the Bayes estimator of the loss 

and risk function of Maxwell’s distribution using inverse Gamma distribution as the prior distribution for θ and squared error 

loss function under the criterion of loss function proposed by Rukhin [1]. 

 

In this paper Bayesian estimation of θ and R(t, θ)has been considered under the assumption of inverse Gamma distribution as 

the prior distribution for the unknown parameter θ and Type II censoring. 

 

On the part of loss function, we have considered the four forms of w(θ, δ) and compare their performance. The forms to be 

considered are as follows: 

1. Squared Error Loss Function (SELF): In this case, 

w(θ, δ) = (θ − δ)2      (2.8) 

 

This loss function is symmetric but unbounded. It suffers from the drawback of giving the same weight to overestimation as 

well as to underestimation. 

 

2. w(θ, δ) = δ−2(θ − δ)2  (2.9) 



www.yumedtext.com | June-2023 |  

    4 

 

This loss function, introduced by DeGroot [5], is asymmetric. It gives more weight to underestimation than to overestimation. 

 

3. Minimum Expected Loss (MELO) Function: In this case, 

w(θ, δ) = θ−2(θ − δ)2  (2.10) 

 

This loss function is asymmetric and bounded. This loss function was used by Tummala and Sathe [6] for estimating reliability 

of certain life time distributions and by Zellner [7] for estimating functions of parameters in econometric models. 

 

4. Exponentially Weighted Minimum Expected Loss (EWMELO) Function 

 

w(θ, δ) = θ−2e−aθ−1
(θ − δ)2  (2.11) 

 

This loss function is also asymmetric and bounded. This type of loss function was used by the author [8] for the first time in 

his work for D.Phil. SELF, MELO and EWMELO were used by Singh, the author, [9] in the study of reliability of a 

multicomponent system and in Bayesian Estimation of the mean and distribution function of Maxwell’s distribution. Recently 

[10], the author again used these loss functions in Bayesian estimation of function of the unknown parameter θ for the Modified 

Power Series Distribution (MPSD) and for estimating Loss and Risk Functions of a continuous distribution. Details of other 

works done by the author are given in [11] to [16] in the references. 

 

3. Bayesian Estimation of Loss and Risk Function  

In this section, the estimation of the loss function has been performed for the probability density function specified by (1) under 

various forms of w(θ, δ), given by (2.8), (2.9), (2,10) and (2.11) respectively. Results are given in the following: 

Theorem1. Let  X = (X1, X2, … Xn)  be a random sample of size n andX(1) <  X(2) <  X(3) <…< X(n−1) < X(n) be the order 

statistic corresponding to this random sample  from  the exponential distribution, specified by the probability density function 

given by (1). Under the assumption of inverse Gamma distribution as the prior distribution for θ,Bayes estimators of θ 

corresponding to various loss functions given as above and Bayes estimators of w(θ, δ) based on Rukhin’s loss function given 

by (2.1) are as follows: 

(a) When w(θ, δ) = (θ − δ)2, 

θ̂B =
β+Tr

r+α−1
                       (3.1) 

γB(X) =
(β+Tr)2

(r+α−2)(r+α−1)2       (3.2) 

Eθ{γB(X)} =
rθ2+(rθ+β)2

(r+α−2)(r+α−1)2     (3.3) 

The risk function of θ̂B is, 

R(θ, θ̂B) =
rθ2+{(1−α)θ+β}2

(r+α−1)2      (3.4) 

(b) When w(θ, δ) = δ−2(θ − δ)2 

θ̂D =
β+Tr

r+α−2
                        (3.5) 



www.yumedtext.com | June-2023 |  

    5 

 

γD(X) =
1

(r+α−1)
                      (3.6) 

Eθ{γD(X)} =
1

(r+α−1)
               (3.7) 

R(θ, θ̂D) = 1 +
θ2{rθ2+(rθ+β)2}

(r+α−2)2 − 2θ(r + α − 2)Eθ (
1

β+Tr
)  (3.8) 

            

 

(c) When w(θ, δ) = θ−2(θ − δ)2 

θ̂M =
β+Tr

r+α+1
                        (3.9) 

γM(X) =
1

(r+α+1)
                      (3.10) 

Eθ{γM(X)} =
1

(r+α+1)
               (3.11) 

R(θ, θ̂M) =
r+{βθ−1−(α+1)}2

(r+α+1)2            (3.12) 

(d)When w(θ, δ) = θ−2e−aθ−1
(θ − δ)2, a > 0 

θ̂E =
β+Tr+a

r+α+1
                             (3.13) 

γE(X) =
1

(𝑟+α+1)
(

β+Tr

β+Tr+a
)r+α          (3.14) 

Eθ{γE(X)} =
1

(r+α+1)
E {(

β+Tr

β+Tr+a
)

r+α

}         (3.15) 

R(θ, θ̂E) =
e−aθ−1

{r+(βθ−1+aθ−1−α−1)
2

}

(r+α+1)2       (3.16) 

Proof: Let the prior probability density function of θ, which is inverse gamma distribution, be given by, 

 

π(θ) = {
βαθ−(α+1)e

−
β
θ

Γ(α)
, if θ > 0, α, β > 0       

0, Otherwise.                                     

     (3.17) 

Where α, β > 0  are known.      

Let tr be an observed value of the statistic Tr .Then, the posterior probability density function of θ is given by, 

 

π(θ / tr) = {
(β+tr)α+rθ−(α+r+1)e

−
(β+tr)

θ

Γ(α+r)
, if θ > 0, α, β > 0       

0, Otherwise.                                                    

     (3.18) 

 

(a) When w(θ, δ) = (θ − δ)2 ,the Bayes estimator of θ,denoted by θ̂B is the mean of the posterior distribution and is given by, 

θ̂B = E(θ / Tr) =
β+Tr

r+α−1
 

γB(X) = E{w(θ, θ̂B)/X} = E{(θ − θ̂B)2/Tr} = 

Var(θ / Tr) =
(β + Tr)2

(r + α − 2)(r + α − 1)2
 

Eθ{γB(X)} =
Eθ{(β+Tr)2}

(r+α−2)(r+α−1)2 = 
rθ2+(rθ+β)2

(r+α−2)(r+α−1)2 

R(θ, θ̂B) = Eθ{ w(θ, θ̂B)} = Eθ {(θ −
β+Tr

r+α−1
)2 } = 

θ2{r+(α−1)2}+2β(1−α)θ+β2

(r+α−1)2 =
rθ2+{(1−α)θ+β}2

(r+α−1)2  
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 (b) When w(θ, δ) = δ−2(θ − δ)2,the Bayes estimator of θ,denoted by θ̂D is given by, 

θ̂D =
E(θ2 / Tr)

E(θ / Tr)
=

β + Tr

r + α − 2
 

γD(X) = E{w(θ, θ̂D)/X} = E{θ̂D
−2(θ − θ̂D)2/Tr} =

1

r + α − 1
 

Since, 
1

r+α−1
 is a constant, Eθ{γD(X)} =

1

(r+α−1)
  

R(θ, θ̂D) = Eθ{ w(θ, θ̂D)} = Eθ{θ̂D
−2(θ − θ̂D)2 } 

R(θ, θ̂D) = 1 +
θ2{rθ2 + (rθ + β)2}

(r + α − 2)2
− 2θ(r + α − 2)Eθ(

1

β + Tr

) 

       

(c) When w(θ, δ) = θ−2(θ − δ)2 ,the Bayes estimator of θ,denoted by θ̂M is given by, 

θ̂M =
E(θ−1 / Tr)

E(θ−2 / Tr)
=

β + Tr

r + α + 1
 

γM(X) = E{w(θ, θ̂M)/X} = E{θ−2(θ − θ̂M)2/Tr} =
1

r + α + 1
 

Since, 
1

r+α+1
 is a constant, Eθ{γM(X)} =

1

(r+α+1)
 

R(θ, θ̂M) = Eθ{ w(θ, θ̂M)} = Eθ {θ−2(θ −
β+Tr

r+α−1
)2 } 

= 
r+(βθ−1−α−1)2

(r+α+1)2  

 

(d)When w(θ, δ) = θ−2e−aθ−1
(θ − δ)2, a > 0, the Bayes estimator of θ,denoted by θ̂E is given by, 

θ̂E =
E(θ−1e−aθ−1

 / Tr)

E(θ−2e−aθ−1
 / Tr)

=
β + Tr + a

r + α + 1
 

γE(X) = E{w(θ, θ̂E)/X} = E{θ−2e−aθ−1
(θ − θ̂E)2/Tr} =

1

r + α + 1
Eθ{(

β + Tr

β + Tr + a
)

r+α

} 

So, Eθ{γE(X)} =
1

(r+α+1)
Eθ {(

β+Tr

β+Tr+a
)

r+α

} 

Since, 0 < (
β+T

β+T+a
)

r+α

< 1, 0 <  Eθ {(
β+Tr

β+Tr+a
)

S+α

} < 1.Therefore, 

Eθ{γE(X)} <
1

(r + α + 1)
= Eθ{γM(X)} 

Since, 
1

(r+α+1)
<

1

(r+α−1)
,we have, Eθ{γM(X)} < Eθ{γD(X)} 

Therefore, Eθ{γE(X)} < Eθ{γM(X)} < Eθ{γD(X)} 

R(θ, θ̂E) = Eθ{ w(θ, θ̂E)} = Eθ {θ−2e−aθ−1
(θ −

β+Tr+a

r+α+1
)2 } 

= 
e−aθ−1

{r+(βθ−1+aθ−1−α−1)
2

}

(r+α+1)2  

Theorem2. Let  X = (X1, X2, … Xn)  be a random sample of size n andX(1) <  X(2) <  X(3) <…< X(n−1) < X(n) be the order 

statistic corresponding to this random sample  from  the exponential distribution, specified by the probability density function 

given by (1).Under the assumption of inverse Gamma distribution as the prior distribution for θ,Bayes estimators of ϕ(θ) =
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e−
t

θ corresponding to various loss functions given as above and Bayes estimators of w(ϕ(θ), δ) based on  loss functions as 

follows:  

(a) When w(ϕ(θ), δ) = (ϕ(θ) − δ)2 

ϕ̂B(θ) = (
β+tr

β+tr+t
)(α+r)   (3.19) 

γϕB(X) = (
β+tr

β+tr+2t
)(α+r) − (

β+tr

β+tr+t
)2(α+r)   (3.20) 

 

(b) When w(ϕ(θ), δ) = δ−2(ϕ(θ) − δ)2  

ϕ̂D(θ) = (
β+tr+𝑡

β+tr+2t
)(α+r)      (3.21) 

γϕD(X) = 1 −
(β+tr)2(α+r)

(β+tr+𝑡)2(α+r)   (3.22) 

 

(c) When w(ϕ(θ), δ) = θ−2(ϕ(θ) − δ)2 

ϕ̂M(θ) = (
β+tr

β+tr+t
)(α+r+2)      (3.23) 

γϕM(X) =
(β+tr)(α+r)Γ(α+r+2)

Γ(α+r)
{

1

(β+tr+2t)(α+r+2) −
(β+tr)(α+r+2)

(β+tr+t)2(α+r+2)}    (3.24) 

 

(d) When w(ϕ(θ), δ) = θ−2e−aθ−1
(ϕ(θ) − δ)2 

ϕ̂E(θ) = (
β+tr+𝑎

β+tr+t+a
)(α+r+2)      (3.25) 

γϕE(X) =
(β+tr)(α+r)Γ(α+r+a+2)

Γ(α+r)
{

1

(β+tr+2t+a)(α+r+2) −
(β+tr+a)(α+r+2)

(β+tr+t+a)2(α+r+2)}    (3.26) 

 

Proof: The proof is similar to that in Theorem 1. 

 

Remark: For r =n, we get results for the complete sample. 

 

Definition: Let γ1(X) and γ2(X) be the two estimators based on Rukhin’s loss function corresponding to two different forms 

of w(θ, δ). γ1(X)  is said to be dominate γ2(X) if Eθ{γ1(X)} ≤ Eθ{γ2(X)} 

 

Since, Eθ{γE(X)} < Eθ{γM(X)} < Eθ{γD(X)} , γE(X) dominates γM(X) while, γ𝑀(X) dominates γD(X) Since, Eθ{γB(X)} =

rθ2+(rθ+β)2

(r+α−2)(r+α−1)2 >
1

(r+α+1)
, provided θ ≥ 1 

 

Thus,  Eθ{γE(X)} < Eθ{γM(X)}  < Eθ{γD(X)} ,for all α ,  β ,and θ  and Eθ{γM(X)} < Eθ{γB(X)  for all  β  and θ ≥

1.Hence, γE(X) is most dominant among γE(X), γM(X), γD(X) and γB(X)  
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4. Conclusion 

In this paper Bayesian estimation of loss and risk functions for the unknown parameter θ of exponential distribution has been 

considered under Rukhin’s loss function for three different forms of w(θ, δ) . The superiority of estimates has also been studied 

and it has been proved that when w(θ, δ) = θ−2e−aθ−1
(θ − δ)2, a > 0 ,the corresponding estimate is most dominant. 

 

5. Conflict of Interest 

There exists no conflict of interest. 

 

REFERENCES 

1. Rukhin AL. Estimating the loss of estimators of binomial parameter. Biometrica. 1988;75(1):153-5. 

2. Epstein B, Sobel M. Life Testing. J Am Stat Assoc. 1953;48:486-501.  

3. Bhattacharya SK. Bayesian Approach to Life Testing and Reliability Estimation. J Am Stat Assoc. 1967;62:48-62. 

4. Fan G. Estimation of the Loss and Risk Functions of Parameter of Maxwell Distribution. Sci J Appl Math Stat. 

2016;4(4):129-33.  

5. DeGroot MH. Optimal Statistical Decisions. New Jersey: John Wiley & Sons, USA; 2005. 

6. Tummala VM, Sathe PT. Minimum Expected Loss Estimators of Reliability and Parameters of Certain Life Time 

Distributions. IEEE Trans Reliab. 1978;R-27(4):283-5. 

7. Zellner A, Park SB. Minimum Expected Loss Estimators (MELO) of Functions of Parameters and Structural 

Coefficients of Econometric Models. J Am Stat Assoc. 1979;74:185-93. 

8. Singh R. D. Phil Thesis (Unpublished). Department of Mathematics and Statistics, University of Allahabad, 

Allahabad, India. 1997. 

9. Singh R. Bayesian Analysis of a Multicomponent System, Proceedings of NSBA-TA, 16-18 Jan.1999, pp.252-261. 

Editor- Dr. Rajesh Singh. The conference was organised by the Department of Statistics, Amrawati University, 

Amrawati-444602. Maharastra, India. 1999. 

10. Singh R. Simulation Aided Bayesian Estimation for Maxwell’s Distribution, Proceedings of National Seminar on 

Impact of Physics on Biological Sciences (August 26, 2010), held by the Department of Physics, Ewing Christian 

College, Prayagraj, India, pp.203-210; 2010. 

11. Singh R. On Bayesian Estimation of Loss and Risk Functions. Sci J Appl Math Stat. 2021;9(3):73-7. 

12. Singh R. On Bayesian Estimation of Function of Unknown Parameter of Modified Power Series Distribution. Int J 

Innov Sci Res Technol. 2021;6(6):861-4.  

13. Singh R. Bayesian Estimation of Function of Unknown Parameters of Some Particular Cases of Modified Power 

Series Distribution. J Emerg Technol Innov Res. 2021;8(7):673-8. 

14. Singh R. Bayesian Estimation of Moments and Reliability of Geometric Distributtion. J Res Appl Math. 2021;7(7):19-

25.  

15. Singh R. Bayesian and Classical Estimation of Parameter and Reliability of Burr Type XII Distribution. J Emerg 

Technol Innov Res. 2021;8(9):546-56.  

16. Singh R. Bayesian and Classical Estimation of Parameter and Reliability of Weibexpo Distribution. Int J Innov Eng 

Res Technol. 2021;8(9):131-9.  


